If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+9p-210=0
a = 3; b = 9; c = -210;
Δ = b2-4ac
Δ = 92-4·3·(-210)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-51}{2*3}=\frac{-60}{6} =-10 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+51}{2*3}=\frac{42}{6} =7 $
| 3x-5=-6x | | x+1(4x+4)=2 | | 2(p-18)+14=0 | | 2x²-5x+1=2x²+12 | | 95x+46=180 | | 248=50-u | | 3.5x=-130+10x | | 2^x-5=12 | | .15-4x=10x+45 | | 15y−4=8 | | 4x×4-1=0 | | 5z+9=–5+7z | | -6+(n/14)=-5 | | 3x=-5-6x | | 2(2y+7)=43 | | 4z/10+8=5 | | −7x−36=20=−3x | | 7−7n=−28 | | 8+2b=26 | | y/5=2.6 | | x+51+147=360 | | -q^2-6q^2+144q-545=0 | | 10c+15=10(2c+3) | | 3x+46=14° | | a=8+11=15 | | 6=2(a+2) | | x=15/5 | | 12.50=b+4.25 | | a+-19=-50 | | 218-w=266 | | (4x+5)°+41=180 | | d+-5.004=28.46 |